Scrambling Sobol' and Niederreiter–Xing Points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scrambling Sobol' and Niederreiter-Xing Points

Hybrids of equidistribution and Monte Carlo methods of integration can achieve the superior accuracy of the former while allowing the simple error estimation methods of the latter. In particular randomized (0; m; s)-nets in base b produce unbiased estimates of the integral, have a variance that tends to zero faster than 1=n for any square integrable integrand, and have a variance that for nite ...

متن کامل

Sobol’ indices and Shapley value

Let f be a finite variance function of d independent input variables. Sobol’ indices are used to measure the importance of input variables and subsets of them. They are based on a variance decomposition. A similar problem arises in economics, when the value produced through the joint efforts of a team is to be attributed to individual members of that team. The Shapley value is widely used to so...

متن کامل

Higher order Sobol’ indices

Sobol’ indices measure the dependence of a high dimensional function on groups of variables defined on the unit cube [0, 1]. They are based on the ANOVA decomposition of functions, which is an L decomposition. In this paper we discuss generalizations of Sobol’ indices which yield L measures of the dependence of f on subsets of variables. Our interest is in values p > 2 because then variable imp...

متن کامل

On the Scrambled Sobol Sequence

The Soból sequence is the most popular quasirandom sequence because of its simplicity and efficiency in implementation. We summarize aspects of the scrambling technique applied to Soból sequences and propose a new simpler modified scrambling algorithm, called the multi-digit scrambling scheme. Most proposed scrambling methods randomize a single digit at each iteration. In contrast, our multi-di...

متن کامل

Discrepancy between Qmc and Rqmc

We introduce a class of functions in d ≥ 3 dimensions which have arbitrary odd superposition effective dimensions between three and d inclusive. We prove that for the integration of any function in this class any Sobol’ points of a fixed length have zero error, whereas Owen’s scrambling of any Sobol’ points of the same length has the same variance of error as simple Monte Carlo methods. Further...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 1998

ISSN: 0885-064X

DOI: 10.1006/jcom.1998.0487